Waterjet is a tool capable of slicing into metal or other materials using a jet of water at high velocity and pressure, or a mixture of water and an abrasive substance. The process is essentially the same as water erosion found in nature but greatly accelerated and concentrated. It is often used during fabrication or manufacture of parts for machinery and other devices. It is the preferred method when the materials being cut are sensitive to the high temperatures generated by other methods. It has found applications in a diverse number of industries from mining to aerospace where it is used for operations such as cutting, shaping, carving, and reaming.
With waterjet machining, a flat piece of material is placed on a table and a cutting head moves across the material (although in some custom systems, the material moves past a fixed head). This simplicity means that it's fast and easy to change materials and that no tool changes are required. All materials use the same cutting head, so there is no need to program tool changes or physically qualify multiple tools.
The movement of the machining head is controlled by a computer, which greatly simplifies control of the waterjet. In most cases, "programming" a part means using a CAD program to draw the part. When you "push print," the part is made by the waterjet machine. This approach also means that customers can create their own drawings and bring them to a waterjet machine for creation.
What little heat is generated by the waterjet is absorbed by the water and carried into the catch tank. The material itself experiences almost no change in temperature during machining. During piercing 0.25" (0,76mm) thick steel, temperatures may get as high as 120° F (50° C), but otherwise machining is done at room temperature.
The result is that there is no heat affected zone (HAZ) on the material. The absence of a HAZ means you can machine without hardening the material, generating poisonous fumes, recasting, or warping. You can also machine parts that have already been heat treated.
The amount of material removed by the waterjet stream is typically about 0.025" (0.76 mm) wide, meaning that very little material is removed. When you are working with expensive material (such as titanium) or hazardous material (such as lead), this can be a significant benefit. It also means that you can get more parts from a given sheet of material.